情绪指数”,可以按时间(如每小时)统计积极新闻、消极新闻的比例和数量变化,也可以对不同媒体(如官媒、券商研报、财经自媒体)进行分别统计,观察情绪差异。
2. 社交媒体与股票论坛舆情监控:
◦ 采集源: 选取用户活跃、代表性强的股票论坛(如东方财富股吧、雪球等)、财经垂直社交媒体。通过其公开API(如有)或基于HTTP请求的爬虫,定向抓取热门帖子列表、帖子内容、回复、以及阅读数、点赞数、转发数等互动数据。严格注意频率控制,避免对目标服务器造成压力,并遵守相关法律法规和数据使用规范。
◦ 处理流程: 这是真正的挑战。论坛文本噪音极大,包含大量无意义的灌水、表情符号、谐音、网络用语、甚至是故意误导的信息。陆孤影设计了一套复杂的清洗和分析流程:
▪ 热度分析: 计算不同股票、板块的讨论热度(发帖量、回复量、阅读量),识别市场关注焦点。
▪ 关键词提取与情感分析: 除了通用的情感分析,他更关注能直接反映市场情绪的特定金融情感关键词。他建立了两套词库:
▪ 贪婪/乐观词库: 如“牛市”、“涨停”、“主升浪”、“十倍”、“抄底”、“满仓干”、“发财”、“牛市起点”、“格局”、“锁仓”、“价值投资”(在特定语境下可能被滥用)等。
▪ 恐惧/悲观词库: 如“熊市”、“跌停”、“割肉”、“清仓”、“销户”、“套牢”、“崩盘”、“股灾”、“救市”、“跑路”、“绝望”、“关灯吃面”等。
▪ 通过统计这些关键词在单位时间窗口内出现的频率、密度,以及其所在帖子的互动热度,构建“论坛贪婪指数”和“论坛恐慌指数”。同时,分析“牛市/熊市”等关键词的比率变化。
▪ 主题识别与演化: 尝试使用LDA等主题模型,识别一段时间内论坛讨论的主要话题(如“高送转”、“业绩预增”、“政策利好”、“外围大跌”),并观察话题热度的演变,这能反映市场情绪的“叙事”结构。
3. 搜索引擎指数:
◦ 采集源: 利用公开的搜索引擎指数工具(如百度指数、微信指数),监控“股票”、“A股”、“牛市”、“熊市”、“开户”、“暴跌”等关键词的搜索指数变化。这反映了场外潜在投资者的关注度和情绪倾向,是重要的先行或同步指标。
【技术实现与挑战】
• 文本数据处理是最大的挑战,需要处理海量、非结构化、噪音大的数据。陆孤影动用了系统的自然语言处理模块,并进行了大量优化。情感分析的准确性需要不断用历史数据回测和修正。
• 数据采集的合规性与伦理需要特别注意。他设定了严格的采集频率限制,只分析公开的、聚合后的趋势数据,绝不涉及任何个人身份信息,也绝不利用爬虫数据进行非法活动。
------
 
温馨提示:亲爱的读者,为了避免丢失和转马,请勿依赖搜索访问,建议你收藏【80小说网】 m.80xs.cc。我们将持续为您更新!
请勿开启浏览器阅读模式,可能将导致章节内容缺失及无法阅读下一章。