bsp;而且目前数学界几乎一致认为,几何和代数的大统一的研究就可能在P进数上。
哦,顺带提一下,他之前的研究,Weyl-Berry猜想也有一部分和P进数有关系。
所以徐川对于舒尔茨教授的这一场报告会很重视,寄希望于从上面得到某些灵感,进而对Weyl-Berry猜想的谱渐近做出突破。
“徐,我们都知道p进ζ函数是p进L函数的一个例子,它体现了对应数域的解析性质,而Coates-Wiles和 Coleman在明显互反律的工作表明上述多项式和 ch(E/C)只是相差一个固定多项式。”
“你说如果选取一个合适的伽罗德域作为有限交换群,是否能将代数对象等同于p-进解析对象?”
一旁,正认真坐着听讲的陶哲轩突然凑了过来,小声的询问道。
徐川皱了皱眉,问道:“岩泽理论的主猜想?”
陶哲轩点了点头,道:“嗯,刚刚在听舒尔茨教授讲解他的类似完备空间理论时有些启发,或许值得尝试一下,你怎么看?”
闻言,徐川紧皱起了眉头,思虑了一番后道:“考虑群环 Zp[Gn]构成的系,由于 Gn到 Gn1之间存在自然限制映射,此系也存在射影极限Λ,事实上,Λ同构于以 Zp为系数的幂级数环 Zp[[T]],它被称做岩泽代数.”
“回到分圆 Zp扩张的情形. Kn的理想类群是有限交换群,记其 p部分是An.一方面,由于它是p阶群,有Zp的作用;而另一方面 Kn/K的伽罗瓦群作用在它上面,故 An是环 Zp[Gn]的有限模.由于 Kn+1到 Kn有自然的映射,我们可以得到 An+1到 An的自然映射.”
“从ch(A)= ch(E/C).可以看出, A说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。”
“从这个角度来看,想要用一个合适的伽罗德域作为有限交换群,进而等同代数和p进数恐怕是一件很难的事情。”
闻言,陶哲轩陷入了沉思中,半响后才道:“
温馨提示:亲爱的读者,为了避免丢失和转马,请勿依赖搜索访问,建议你收藏【80小说网】 m.80xs.cc。我们将持续为您更新!
请勿开启浏览器阅读模式,可能将导致章节内容缺失及无法阅读下一章。