返回

大国院士

关灯
护眼
第143章 数学界有史以来最强的天才
书签 上一页 书页/目录 下一页 书架

;新梅森素数猜想有三个问题,三个问题息息相关,如果能证明其中两个,那么剩下的一个会自然成立。

        在科学发展史上,梅森素数的寻找在手算笔录年代曾作为检测人类智力发展的一项重要指标。

        就像如今的IQ测试题目一样,能计算出来越多的梅森素数则代表这个人越聪明。

        因为梅森素数虽然貌似简单,但当指数P值较大时,它的探究不仅需要高深的理论和纯熟的技巧,还需要进行艰苦的计算。

        最著名的,素有“数学上帝”之称的欧拉,在双目失明的情况下,靠心算证明了2^31-1是第8个梅森素数;

        这个具有10位的素数(即2147483647),堪称当时世界上已知的最大素数。

        普通人能加减乘除三位数的数字就很不错,但欧拉能心算将数字推到十亿级,这恐怖的计算能力、大脑反应能力和解题技巧可以说无愧于“天选之子”的美誉。

        此外,13年的时候,美国中央密苏里大学数学家柯蒂斯-库珀领导的研究小组,通过参加一个名为“互联网梅森素数大搜索”(GIMPS)的项目,发现了迄今为止最大的梅森素数——2^57885161-1(2的57885161次方减1)。

        该素数也是目前已知的最大素数,有17425170位,比之前发现的梅森素数多了4457081位数。

        如果用普通的十八号标准字体将其打印出来的话,它的长度能超过六十五公里。

        这个数字虽然很大很大,但放到数学中来说,又很小很小。

        因为‘数’是无穷的,数具有无穷大这个概念,放到数学上来说,在2^57885161-1(2的57885161次方减1)这个数字之后,到底还有多少素数谁也不知道。

        这场持续了千年,数学史上规模最为宏大的探寻之旅:梅森素数到底有多少个,是否是无穷的,截止到现在,依旧没人能给出答案。

        证明新梅森素数猜想,难度丝毫不亚于徐川之前证明过的Weyl-Berry猜想。

        截止到目前为止,数学界针对素数猜想证明的最高难度的也只不过弱歌德巴赫猜想。

        即:【任何一个大于7的奇数都能被表示成三个奇质数的和。】

   &

温馨提示:亲爱的读者,为了避免丢失和转马,请勿依赖搜索访问,建议你收藏【80小说网】 m.80xs.cc。我们将持续为您更新!

请勿开启浏览器阅读模式,可能将导致章节内容缺失及无法阅读下一章。

书签 上一页 目录 下一页 书架